
CS 103: Mathematical Foundations of Computing
Problem Set 3

July 12, 2019

Checkpoint due Monday, July 15th at 3:00PM.
Remaining problems due Friday, July 19th at 3:00PM.

This third problem set explores binary relations, functions, and their properties. We’ve chosen these prob-
lems to help you learn how to reason about these structures, how to write proofs using formal mathematical
definitions, and why all this matters in practice.

Before beginning this problem set, we strongly recommend reading over the following handouts:

• The “Guide to Proofs on Discrete Structures,” which explores how to write proofs when definitions are
rigorously specified in first-order logic. This handout contains both general guiding principles to follow
and some sample proof templates that you’re welcome to use here.

• The “Discrete Structures Proofwriting Checklist,” which contains some specific items to look for when
proofreading your work.

We recommend that you take a look at the proofs from this week’s lectures to get a sense of what this looks
like. The proofs on cyclic relations from Wednesday, or the proofs about injectivity and surjectivity from
Friday, are great examples of the style we’re looking for.

Good luck, and have fun!

1



Problem Set 3 July 12, 2019

These three checkpoint problems on this problem set are due on Monday at 3:00PM.

Checkpoint Problem One: The Coprime Relation
If a and b are integers, we say that a divides b if there is an integer q such that b = aq. We’ll say that a
and b are coprime if there are no integers that divide both a and b besides ±1. As an example, 7 and 2 are
coprime (±1 are the only integers that divide both 7 and 2) but 6 and 2 are not (the integer 2 divides both
6 and 2).

We define a relation ⊥ (note we are reusing our First-Order Logic symbol for “false,” but that meaning of
this symbol is unrelated to this new meaning we are giving it just for this problem) over N as:

x⊥y if x and y are coprime

Note that this specifically is a property that holds between pairs of numbers. For example, you can say “8 is
coprime with 15” or “10 is coprime with 21,” but not that “45 is coprime.” This follows from the definition,
which only defines what coprime means in terms of pairs of integers.

For each of the properties below, determine whether or not the ⊥ relation has that property. If it does, give
a brief (one-sentence) justification why. For each property it doesn’t have, write a short disproof.

i. Is the relation ⊥ reflexive?

ii. Is the relation ⊥ irreflexive?

iii. Is the relation ⊥ symmetric?

iv. Is the relation ⊥ asymmetric?

v. Is the relation ⊥ transitive?

As a total aside, using the notation ⊥ for expressing coprimality comes from the text Concrete Mathemat-
ics by Donald Knuth. The rationale given is that ⊥ represents a pair of perpendicular lines and, “Like
perpendicular lines don’t have a common direction, perpendicular numbers don’t have common factors.”

Checkpoint Problem Two: Binary Relations IRL
The first part of this problem revolves around a mathematical construct called homogeneous coordinates
that shows up in computer graphics. If you take CS148, you’ll get to see how they’re used to quickly deter-
mine where to display three-dimensional objects on screen.

Let R2 denote the set of all ordered pairs of real numbers. For example (137, 42) ∈ R2, (π, e) ∈ R2, and
(−2.71, 103) ∈ R2. Two ordered pairs are equal if and only if each of their components are equal. That is,
we have (a, b) = (c, d) if and only if a = c and b = d.

Consider the relation E defined over R2 as follows:

(x1, y1)E(x2, y2) if ∃k ∈ R .(k 6= 0 ∧ (kx1, ky1) = (x2, y2)).

For example, (3, 4)E(6, 8) because (2 · 3, 2 · 4) = (6, 8).

i. Prove that E is an equivalence relation over R2.

Remember that the “if ” in the definition of the relation E means “is defined as” and isn’t an implication.

Follow the advice of the Guide to Proofs on Discrete Structures and the Discrete Structures Proofwriting
Checklist: don’t use quantifiers or connectives in your written proof. You may want to start by taking
the first-order statement in the definition here and determining what it says in plain English.

CS 103: Mathematical Foundations of Computing — Summer 2019 2



Problem Set 3 July 12, 2019

Once you’ve written a draft of your proof of this result, take a few minutes to read over them and apply both
the standard Proofwriting Checklist (the one you’ve used on the first two problem sets) and the new Discrete
Structures Proofwriting Checklist. Here are a few specific things to keep an eye on:

• The key terms in binary relations (reflexivity, symmetry, transitivity, irreflexivity, and asymmetry)
are defined in first-order logic and proofs of those properties depend on those first-order definitions.
However, as a reminder, you should not include first-order logic notation (quantifiers, connectives,
etc.) anywhere in your proofs. Look at the proofs from the Guide to Binary Relations and last week’s
lectures for some examples of what we’re expecting.

• Make sure that you’ve set all of your proofs up properly. For example, what should a proof that a
relation is symmetric look like? What should you assume, and what you should prove? Does your proof
match this pattern?

• You don’t need to – and in fact, shouldn’t – repeat the definitions of the E or R relations in your proofs.
You can assume that the reader knows how they’re defined.

Checkpoint Problem Three: Redefining Equivalence Relations?
Below is a purported proof that every relation that is both symmetric and transitive is also reflexive.

(False!) Theorem: If R is a symmetric and transitive binary relation over a set A, then R is also reflexive.
(Incorrect!) Proof : Let R be an arbitrary binary relation over a set A such that R is both symmetric and
transitive. We need to show that R is reflexive. To do so, consider an arbitrary x, y ∈ A where xRy. Since
R is symmetric and xRy, we know that yRx. Then, since R is transitive, from xRy and yRx we learn that
xRx is true. Therefore, R is reflexive, as required.

This proof, unfortunately, is incorrect.

i. Draw a picture of a binary relation that is symmetric and transitive but not an equivalence relation.
Briefly justify your answer, though no formal proof is required. This shows that the “theorem” here
isn’t even true to begin with.

What has to happen for a binary relation to not be an equivalence relation? What, specifically, has to
happen if you know that that relation is symmetric and transitive?

ii. What’s wrong with this proof? Justify your answer. Be as specific as possible.

We’ve given this proof as an example because the error it contains is one that we see a lot of people
make consistently throughout the problem set. That often leads to folks having errors in every single
one of the proofs they submit. Read over the Guide to Proofs on Discrete Structures and Discrete
Structures Proofwriting Checklist and make sure you’re confident that you see what the issue is. If you
aren’t sure, feel free to ask on Piazza or to stop by office hours. Regardless of what you write, be sure
to read the checkpoint solutions as soon as they come out! It would be a shame if you missed the issue
here and then made this exact mistake later on in this problem set.

CS 103: Mathematical Foundations of Computing — Summer 2019 3



Problem Set 3 July 12, 2019

These remaining problems are due on Friday at 3:00PM.

1 So What Exactly is a Binary Relation, Anyway?
When we described binary relations in lecture, we gave an operational definition of a binary relation by
saying what binary relations do, but we never actually said what binary relations are.

Let’s begin with a new definition. Given a set A, the Cartesian square of A, denoted A2, is the set of all
ordered pairs that can be formed from elements of A. Formally speaking, we define A2 as

A2 = {(a1, a2) | a1, a2 ∈ A}

For example, if A = {1, 3, 7}, then

A2 = {(1, 1), (1, 3), (1, 7), (3, 1), (3, 3), (3, 7), (7, 1), (7, 3), (7, 7)}.

We can use the Cartesian square of a set to rigorously define binary relations. Formally speaking, a binary
relation R over a set A is a set R ⊆ A2. The ordered pairs in R correspond to pairs of elements where the
relation holds. For example, the < relation over the set N would formally be defined as

< = {(0, 1), (0, 2), (0, 3), . . . , (1, 2), (1, 3), (1, 4), . . . , (2, 3), (2, 4), (2, 5), . . .}

When we’ve talked about relations, we’ve used the notation xRy to denote that x relates to y by relation R.
Formally speaking, the notation xRy is just a shorthand for (x, y) ∈ R. This means that if you happen to
stumble across a random set of pairs of things, you could interpret it as a binary relation.

Visit the CS103 website and download the starter project files for Problem Set Three. In BinaryRelations.h,
there’s a definition of a Relation type that represents a binary relation expressed as a set of ordered pairs.
We’d like you to write some C++ code in BinaryRelations.cpp to analyze those relations.

i. Implement a function

bool isReflexive(Relation R);

that takes as input a binary relation R and returns whether R is reflexive.

You already have practice translating first-order logic statements into code. Aside from the new syntax
for working with pairs, this is no different.

ii. Implement a function

bool isSymmetric(Relation R);

that takes as input a binary relation R and returns whether R is symmetric.

iii. Implement a function

bool isTransitive(Relation R);

that takes as input a binary relation R and returns whether R is transitive.

iv. Implement a function

bool isIrreflexive(Relation R);

that takes as input a binary relation R and returns whether R is irreflexive.

v. Implement a function

bool isAsymmetric(Relation R);

that takes as input a binary relation R and returns whether R is asymmetric.

CS 103: Mathematical Foundations of Computing — Summer 2019 4



Problem Set 3 July 12, 2019

vi. Implement a function

bool isEquivalenceRelation(Relation R);

that takes as input a binary relation R and returns whether R is an equivalence relation.

vii. Implement a function

bool isStrictOrder(Relation R);

that takes as input a binary relation R and returns whether R is a strict order.

viii. Implement a function

std::vector<std::set<int>> equivalenceClassesOf(Relation R);

that takes as input a binary relation R, which you can assume is an equivalence relation, and returns
a list of all equivalence classes of R. The return type is a std::vector (essentially, a list) of sets of
integers; there’s information in the starter files about how to work with std::vector. You should
return exactly one copy of each equivalence class.

Our starter code will automatically call your isEquivalenceRelation predicate function and, for each
relation you flag as an equivalence relation, will call equivalenceClassesOf to color code the different
equivalence classes of each equivalence relation.

ix. Edit the file PartA.relation in the res/ directory to define a binary relation that is neither symmetric
nor asymmetric. This shows that the terms “symmetric” and “asymmetric” are not negations of one
another. There’s a description of the expected file format in this file.

x. Edit the file PartB.relation in the res/ directory to define a binary relation that is both symmetric and
asymmetric. (Yes, this is possible!)

xi. Edit the file PartC.relation in the res/ directory to define a binary relation that is both reflexive and
irreflexive. (Yes, this is possible!)

You’re welcome to submit your answers as many times as you’d like; our autograder will provide feedback
on how you’re doing.

CS 103: Mathematical Foundations of Computing — Summer 2019 5



Problem Set 3 July 12, 2019

2 Fun with Equivalence Relations
Throughout mathematics, it’s helpful to switch back and forth between the rigorous definitions we’ve devel-
oped for various terms and the intuitions that got us to those terms in the first place.

i. Let A = {1, 2, 3}. How many different equivalence relations are there over the set A? Explain how you
arrived at your answer and why you know there aren’t any more. No formal proof is required.

Two binary S and T over the same set are the same if, for any x and y, xSy holds if and only if xTy
holds. For example, The relation xSy over R defined as |x| = |y| is exactly the same relation as xTy
over R defined as x2 = y2, since xSy and xTy are always either both true or both false.

Let’s suppose you have an equivalence relation R over a set A. The Fundamental Theorem of Equivalence
Relations says that R partitions the elements of A into different equivalence classes. If you pick exactly one
element from each equivalence class and gather the result into a set, you get what’s called a system of
representatives for R. Stated differently, a system of representatives for an equivalence relation R over a
set A is a set X ⊆ A such that X contains exactly one element of each equivalence class of R.

ii. Consider the equivalence relation ≡5 over the set Z. Give two different systems of representatives for
≡5, and briefly justify your answer.

iii. Consider the equivalence relation = over the set Z. List all the systems of representatives for that
equivalence relation. Briefly justify your answer; in particular, explain how you know you have all
possible systems of representatives.

Systems of representatives are a powerful idea, and we’ll return to them later in the quarter.

CS 103: Mathematical Foundations of Computing — Summer 2019 6



Problem Set 3 July 12, 2019

3 Redefining Strict Orders
In Wednesday’s lecture, we defined strict orders as binary relations that are irreflexive, asymmetric, and
transitive. Interestingly, it turns out that we could have left asymmetry out of our definition and just gone
with irreflexivity and transitivity.

i. Prove that a binary relation R over a set A is a strict order if and only if the relation R is irreflexive
and transitive.

Once you’ve written up your proof, take a minute to critique your proof by applying the Proofwriting
Checklist and the Discrete Structures Proofwriting Checklist. Also, think about the following:

• The statement you need to prove here is a biconditional. How do you prove a biconditional
statement? What should you be assuming in each part of the proof? What do you need to prove?

• At some point, you’ll need to prove that R is asymmetric under some set of assumptions. What
does a proof of asymmetry look like? What should you be assuming? What should you be proving?

• The proof you will be doing here will involve reasoning about arbitrarily-chosen binary relations
where you have no idea what the relation is or what set it’s over and only know some properties
that it must have (say, that it’s irreflexive). In cases like these, be very careful not to make claims
about how the relation works that don’t immediately follow from your assumptions. After all, your
relation could be something like the < relation over N, or the ( relation over ℘(R), or the “runs
strictly faster than” relation over people.

Going forward, it turns out that one of the easiest ways to prove that a relation is a strict order is to prove
that it’s irreflexive and transitive.

While we could have left asymmetry out of the definition of a strict order, we could not have left out
transitivity.

ii. Edit the file PartD.relation in the res/ directory of the starter files to define a binary relation that
is irreflexive and asymmetric, but not transitive. This shows that a relation that’s asymmetric and
irreflexive isn’t necessarily a strict order.

It turns out that we also could have equivalently defined strict orders to be binary relations that are asymmet-
ric and transitive. We’re not going to ask you to prove this, but it’s a great exercise if you want to give it a try!

A note going forward: this result about strict orders is so fundamental that we’ll commonly use it without
citation. Feel free, in your proofs later in this course, to prove that a binary relation is a strict order by just
proving that it’s irreflexive and transitive. No further elaboration is needed!

CS 103: Mathematical Foundations of Computing — Summer 2019 7



Problem Set 3 July 12, 2019

4 Properties of Functions
Consider the following Venn diagram:

Injections SurjectionsBijections

Functions

Non-functions

1

2

Below is a list of purported functions. For each of those purported functions, determine where in this
Venn diagram that object goes. No justification is necessary. To submit your answers, edit the file
FunctionsVennDiagram.h in the src/ directory of the starter files for this problem set. For simplicity, we’ve
shown you where functions 1 and 2 go in this Venn diagram.

1. f : N→ N defined as f(n) = 137

2. f : N→ N defined as f(n) = −137

3. f : N→ N defined as f(n) = n2

4. f : Z→ N defined as f(n) = n2

5. f : N→ Z defined as f(n) = n2

6. f : Z→ Z defined as f(n) = n2

7. f : R→ N defined as f(n) = n2

8. f : N→ R defined as f(n) = n2

9. f : N→ N defined as f(n) =
√
n. (
√
n is the principle square root of n, the nonnegative one.)

10. f : R→ R defined as f(n) =
√
n.

11. f : R→ {x ∈ R | x ≥ 0} defined as f(n) =
√
n.

12. f : {x ∈ R | x ≥ 0} → {x ∈ R | x ≥ 0} defined as f(n) =
√
n.

13. f : {x ∈ R | x ≥ 0} → R defined as f(n) =
√
n.

14. f : N→ ℘(N), where f is some injective function.

15. f : {0, 1, 2} → {3, 4}, where f is some surjective function.

16. f : {breakfast, lunch, dinner} → {shakshuka, soondubu, maafe}, where f is some injection.

CS 103: Mathematical Foundations of Computing — Summer 2019 8



Problem Set 3 July 12, 2019

5 Permutation Dances
There’s a dance in which each dancer has an assigned position. In the first dance, the dancers begin in the
positions indicated on the left (it’s a top-down view, and we’ve numbered the dancers 0, 1, . . . , 9). In the
second dance, some dancers have moved to new starting positions, and the overall arrangement is what’s
shown on the right.

0

1

2

3

4

5

6

7

8

9 0

1

2

3

4

5

6 7

89

How can we model how the dancers’ positions changed from the first dance to the second? For now, focus on
Dancer 0. Notice that, in the second dance, Dancer 0 has moved to the inner position in the bottom-right
pair. That’s the spot that was occupied by Dancer 5 in the first dance. In that sense, from Dancer 0’s
perspective, she starts off the second dance at “the spot that Dancer 5 used to occupy.”

We can do this for other people as well. Look at Dancer 8, for example. Dancer 8 ended up in the outer
position in the bottom-right pair, which is where Dancer 7 used to be. So we could instruct Dancer 8 to get
to his new location by saying “go to where Dancer 7 was in the previous dance.”

How about Dancer 3? Notice that Dancer 3 started in the inner pair of the top-center pair, and that’s where
she ended up as well. If we wanted to instruct Dancer 3 how to prepare for the second dance, we could tell
her “go to the spot that Dancer 3 was in in the first dance.” It’s a little verbose, but it works!

More generally, we can move from the first dance to the second by telling each dancer whose spot they should
take. This method of rearranging a group of things (here, people, but in principle they could be anything)
by indicating how each item takes on a position previously held by some item is called a permutation, which
is at the heart of this problem.

To make this rigorous, let’s introduce some notation. First, for any natural number k, let’s have

JkK = {n ∈ N | n < k}

In other words, JkK is the set of all natural numbers less than k. The people in our dance can be represented
as J10K. Next, let’s think of how everyone swaps around. This is something we can model as a function that
takes as input a person, then outputs which person’s position they should move to. In our case, we could
represent this as a function f : J10K→ J10K. For example, we’d have f(0) = 5.

i. Just to make sure everything makes sense at this point, what is f(6)?

Formally speaking, a permutation of a collection of items A is a bijection σ : A → A from A to itself.
(That’s a lower-case Greek letter sigma, by the way, in case you haven’t encountered it before.) There’s a
good reason this definition says a permutation is a bijection, rather than just a plain old function.

ii. Let’s go back to our example of dancers changing places. Imagine that there’s a dance where the
dancers start off in some initial configuration. To set up for the next dance, each dancer moves to the
spot previously occupied by one of the dancers, and after everyone has set up all positions are filled. If
we model that change as a function as we did here, explain why that function must be a bijection. No
formal proof is necessary, but you should address the rigorous definition of a bijection in your answer.
It might help to think of things this way: what happens if that function isn’t a bijection?

CS 103: Mathematical Foundations of Computing — Summer 2019 9



Problem Set 3 July 12, 2019

There’s a nice notation that’s often used to describe permutations called two-line notation. In the top
line, we list the objects being permuted in some nice, human-readable order. Then, below each object, we
write the object whose position it ends up in after the objects move. For example, the two-line notation(

0 1 2 3 4 5 6 7 8 9
1 3 5 7 9 2 4 6 8 0

)
could be read as “Dancer 0 moves to the position previously held by Dancer 1, Dancer 1 moves to the position
previously held by Dancer 3, Dancer 2 moves to the position previously held by Dancer 5, etc.” This isn’t
the permutation described in the previous picture; it’s just an example of the notation.

iii. Look back at the dances from the previous page. The function f we described earlier tells each dancer
whose position to take when setting up for the second dance. Express the function f using two-line
notation by filling in the following blanks:(

0 1 2 3 4 5 6 7 8 9
_ _ _ _ _ _ _ _ _ _

)
Now, let’s imagine that there’s a third dance scheduled and the dancers yet again need to change places. At
the end of the first dance, Dancer 0 moved to the spot that Dancer 5 started off in. To make things easier
for Dancer 0, imagine that she adopts the following strategy: starting with the second dance, she always
lines up for the next dance in by moving to the position Dancer 5 held in the prior dance.

iv. Where will Dancer 0 be at the start of the third dance? Provide your answer in the following way:
determine which position Dancer 0 will be in, then look back at the original configuration of the dancers
and tell us whose position Dancer 0 would be standing in. For example, if Dancer 0 would end up in
the outer position in the bottom-right pair, you’d say that Dancer 0 ends in the position originally
held by Dancer 7.

Now, imagine that every dancer adopts a strategy similar to Dancer 0. Each dancer n is assigned some
dancer f(n) that they’re tasked with following. For each dance after the first, Dancer n then sets up at the
spot where Dancer f(n) was standing at the start of the previous dance.

v. If all the dancers adopt this strategy, where will Dancer 0 end up at the start of the fourth dance?
Again, express your answer by looking back at the original configuration of dancers from the first dance
and telling us whose position Dancer 0 will be occupying.

In parts (iv) and (v) of this problem, you’ve explored an important idea. We can use the original positions
of the dancers as a way of identifying each location. That is, rather than saying “the dancer in the top center
position,” we can say “the position that Dancer 0 occupies in the first dance.”

Let’s imagine we want to know where some dancer is going to be in the third dance. We have a permutation
f that explains how all the dancers change positions from the first dance to the second. Can we somehow
manipulate f to see where everyone ends up for the third dance?

vi. Suppose you pick Dancer n and want to figure out where he starts in the third dance. Explain why
he will be in the spot originally occupied by person (f ◦ f)(n) in the first dance. No formal proof is
necessary.

vii. Starting with your answer from part (iii) of this problem, write out the permutation f ◦f using two-line
notation by filling in the following blanks:

You can solve this problem either by working this out mathematically, or by using the intuition from
part (vi). Before you move on, make sure you can solve it both ways!(

0 1 2 3 4 5 6 7 8 9
_ _ _ _ _ _ _ _ _ _

)

CS 103: Mathematical Foundations of Computing — Summer 2019 10



Problem Set 3 July 12, 2019

viii. Explain why Dancer n’s position in the fourth dance is the given by the spot originally occupied by
Dancer (f ◦ f ◦ f)(n) in the first dance. No formal proof is necessary.

Given a permutation σ : A→ A, the kth power of σ, for some natural number k ≥ 1, is defined as

σk = σ ◦ σ ◦ · · · ◦ σ,

where there are k copies of σ composed together. For example, σ4 = σ ◦ σ ◦ σ ◦ σ. As a useful edge case,
we’ll define σ0 to be the function given by the rule σ0(x) = x.

Powers of permutations give us a really nice way of figuring out where all the dancers will be at the start of
the kth dance. Specifically, the positions are given by the outputs of fk−1, where, as before, positions are
given by the number of the dancer who was originally at that position in the first dance.

Imagine that the dancers keep changing their positions using the setup described above. At some point, it’s
guaranteed that all the dancers will end up returning to their original positions.

ix. How many different configurations will the dancers go through before everyone returns back to their
original positions? Justify your answer, but no formal proof is necessary.

One final piece of terminology. If σ : A→ A is a permutation, the order of σ is the smallest positive number
k for which σk = σ0. With regards to part (ix) of this problem, the order of f happens to be the number of
unique configurations the dancers will end up going through.

Permutations are a useful building block in mathematics. We’ll see them again in the next problem set,
where we’ll use them to talk about symmetries.

CS 103: Mathematical Foundations of Computing — Summer 2019 11



Problem Set 3 July 12, 2019

6 Left, Right, and True Inverses
Let f : A→ B be a function. A function g : B → A is called a left inverse of f if the following is true:

∀a ∈ A. g(f(a)) = a.

i. Find examples of a function f and two different functions g and h such that both g and h are left
inverses of f . This shows that left inverses don’t have to be unique. (Two functions g and h are
different if there is some x where g(x) 6= h(x).) Express your answer by drawing pictures of f , g, and
h along the lines of what we did in class.

ii. Prove that if f is a function that has a left inverse, then f is injective.

As a hint on this problem, look back at the proofs we did with injections in lecture. To prove that a
function is an injection, what should you assume about that function, and what will you end up proving
about it?

Let f : A→ B be a function. A function g : B → A is called a right inverse of f if the following is true:

∀b ∈ B. f(g(b)) = b.

iii. Find examples of a function f and two different functions g and h such that both g and h are right
inverses of f . This shows that right inverses don’t have to be unique. As in part (i), express your
answer by drawing pictures of f , g, and h along the lines of what we did in lecture.

iv. Prove that if f is a function that has a right inverse, then f is surjective.

If f : A → B is a function, then a true inverse (often just called an inverse) of f is a function g that’s
simultaneously a left and right inverse of f . In parts (i) and (iii) of this problem you saw that functions can
have several different left inverses or right inverses. However, a function can only have a single true inverse.

v. Prove that if f : A → B is a function and both g1 : B → A and g2 : B → A are inverses of f , then
g1(b) = g2(b) for all b ∈ B.

vi. Explain why your proof from part (v) doesn’t work if g1 and g2 are just left inverses of f , not full
inverses. Be specific – you should point at a specific claim in your proof of part (v) that is no longer
true in this case.

vii. Explain why your proof from part (v) doesn’t work if g1 and g2 are just right inverses of f , not full
inverses. Be specific – you should point at a specific claim in your proof of part (v) that is no longer
true in this case.

Left and right inverses have some surprising applications. We’ll see one of them next week!

CS 103: Mathematical Foundations of Computing — Summer 2019 12



Problem Set 3 July 12, 2019

7 The Star-Drawing Saga, Part Four
On Problem Set 2, you proved that for natural numbers p and s where p > 0, the star {p / s} is simple if
and only if there is an integer t where 1 ≡p s · t. This theorem is useful for checking whether a particular
star is simple, but it’s fairly complicated to use in practice. What we’d ultimately like is some criterion we
can use to quickly “eyeball” a pair of numbers p and s and to quickly tell whether {p / s} is a simple star.

An observation you may have had so far is that in cases where we do have a simple star (say, {7 / 2}, {7 /
3}, {8 / 3}, {10 / 3}, {12 / 5}, etc.) the values of p and s have no common factors, whereas in the stars
we’ve seen that aren’t simple (say, {6 / 2}, {8 / 2}, {9 / 3}, {10 / 4}, etc.) the values of p and s do have a
common factor. Perhaps that’s important?

As a reminder from the checkpoint problem, if a and b are integers, we say that a divides b if there is an
integer q such that b = aq. We’ll say that a and b are coprime if there are no integers that divide both a
and b besides ±1.

With this in mind, we can form a guess of what we think is necessary for a star to work:

Conjecture : A p-point star with a step size of s is a simple star if and only if p and s are coprime.

At this point, this is just a conjecture – something we think is true, but aren’t totally sure about. Our goal
will be to try to see whether this statement is a theorem, meaning that it’s something we have a rigorous
proof for, or whether it’s actually not true.

We’ll need to develop a little bit more mathematical machinery before we can fully take aim at resolving
this question, but with the tools you’ve developed so far, you actually have enough to show that at least one
direction of this result is true.

Let p and s be natural numbers where p > 0. Prove that if {p / s} is a simple star, then p and s are coprime.
You may want to use the following fact, which you can use without proof: if x and y are integers and xy = 1,
then either x = y = 1 or x = y = −1. Also, feel free to use the result you proved on Problem Set 2.

You have three proof techniques at your disposal at this point: direct proof, proof by contradiction, and proof
by contrapositive. If you’re having trouble with one of these approaches, try switching to another.

CS 103: Mathematical Foundations of Computing — Summer 2019 13



Problem Set 3 July 12, 2019

We’ve included two optional fun problems for this problem set. Feel free to work through all of them, but
please submit at most one of them for credit. If you submit answers to more than one, we won’t have the
bandwidth to grade all your answers and will just pick one arbitrarily. (Here, by “arbitrarily,” we mean “based
on a whim and without any deeper reason,” as in “the CEO made her decisions arbitrarily and capriciously,
much to the chagrin of her underlings.”)

Optional Fun Problem One: High-Order Dancing (Extra Credit)
In Problem Five, we modeled ten dancers changing places as a permutation σ : J10K → J10K. The order of
that permutation, as you saw, corresponds to the number of unique configurations the dancers will take on
before everyone returns to their starting positions.

Find a permutation σ : J10K→ J10K of order 30. Justify your answer without actually computing σ30.

Optional Fun Problem Two: Reversing a Fundamental Theorem (Ex-
tra Credit)
The Fundamental Theorem of Equivalence Relations (FToER) says that if R is an equivalence relation over
a set A, then every a ∈ A belongs to exactly one equivalence class of R. Here, an equivalence class is a set
of the form [x]R = {y ∈ A | xRy}.

The general convention is to not speak of the equivalence classes of a binary relation R unless R actually
happens to be an equivalence relation. But let’s say that we decide to break with that tradition. After all,
for any relation R, the set [x]R = {y ∈ A | xRy} is a perfectly well-defined set – it just might not happen to
correspond to our intuition about how equivalence classes behave.

For the purposes of this problem, if R is any binary relation over a set A, we’ll call a set

[x]R = {y ∈ A | xRy}

a pseudoequivalence class of R. If R is indeed an equivalence relation, then the pseudoequivalence classes
of R are the equivalence classes of R, and if R isn’t then these sets might not have a nice structure.

Prove or disprove: if R is a binary relation over a set A and every element of A belongs to exactly one
pseudoequivalence class of R, then R is an equivalence relation. In other words, we’d like you to prove or
disprove whether you can flip the direction of implication in the FToER.

CS 103: Mathematical Foundations of Computing — Summer 2019 14


	So What Exactly is a Binary Relation, Anyway?
	Fun with Equivalence Relations
	Redefining Strict Orders
	Properties of Functions
	Permutation Dances
	Left, Right, and True Inverses
	The Star-Drawing Saga, Part Four

